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Summary
Objectives. This review aims to examine the current use of artificial intelligence (AI) in mental 
health. The first step involves categorising AI algorithms into three subtypes: natural language 
processing (NLP), machine learning (ML), and deep learning (DL). Next, we evaluated their 
application in mental health and the instrumental methods used to collect valid and sufficient 
quantitative data. 
Results. Evidence suggests that AI algorithms are being used, particularly in the diagnosis or 
differential diagnosis of mental illness. The most commonly used instrumental techniques were 
neuroimaging, particularly magnetic resonance imaging (MRI), and neurophysiology, specifi-
cally electroencephalography (EEG). 
Conclusions. This review is the first to analyse these three algorithms in the field of mental 
health, without any limitations on method or population type. Further studies are necessary to 
better understand the validity of these algorithms in clinical practice. It is important to antici-
pate both useful innovations and potential difficulties.
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INTRODUCTION

Artificial intelligence 
Recent years have seen significant advances in technology, leading to what is com-
monly referred to as the “Fourth Industrial Revolution” or “Industry 4.0” 1. Simulta-
neously, there has been a progression in digital technology, commonly known as 
the “Digital Revolution” 2. This revolution is impacting all areas of society, including 
healthcare. With the advent of the COVID-19 pandemic, healthcare professionals 
and patients alike are increasingly using technological devices that were previ-
ously under-utilised but have now become commonplace 3.
Mental health services have undergone a transformation towards digitised medi-
cine, utilising technology at various levels, from diagnosis and related care to ser-
vice delivery 4. One of the most controversial technological innovations is artificial 
intelligence (AI), which has brought about numerous changes and raised ethical 
questions 5.
The birth of AI dates back to 1950 when mathematician Alan Turing published his 
article “Computing machinery and intelligence” in the journal “Mind” 6. Turing ques-
tioned the possibility of building a machine that could think like humans, but defin-
ing human thought is a complex task that limits the answer to this question. There-
fore, he later decided to shift his focus from abstract concepts to something more 
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concrete: specifically, he began to hypothesise the creation 
of a machine that could act in a certain way to satisfy the de-
mands placed upon it. The term “artificial intelligence” was 
later coined by John McCarthy in 1956, who defined it as “the 
science and engineering of making machines intelligent” 7.
Over the years, several algorithms have been developed 
for various purposes. Some were initially created for rec-
reational use, such as IBM Deep Blue 8, IBM Watson 9, and 
DeepMind AlphaGo 10; others, like ChatGPT (GPT: Generative 
Pre-trained Transformer) 11,12, have become more widely used.
Defining AI is a complex task as there are multiple defini-
tions available  13. However, they can be simplified into four 
categories  14: i) systems that think like humans; ii) systems 
that act like humans; iii) systems that think rationally; and iv) 
systems that act rationally.
Currently, the three most widely used types of AI are natu-
ral language processing (NLP), machine learning (ML), and 
deep learning (DL). It is important to note that these algo-
rithms are often combined.

Natural language processing
NLP originated in the 1950s from the integration of comput-
er science, linguistics, and mathematics. It is an analytical 
technique that uses computers to decode and automatically 
understand human language  15. NLP can be divided into 
two categories: natural language understanding (NLU) is 
the process of translating human language into a machine-
understandable format  16; and natural language generation 
(NLG) is the process of producing human language output 
from digital data 17, including text-to-text 18, text-to-speech 19, 
and other-to-text  20. NLU and NLG are important compo-
nents of speech technology.
The process of NLP can be divided into four parts: text pre-
processing, text representation, model training, and model 
evaluation. The first part involves simplifying and correcting 
the text by removing meaningless symbols and correcting 
spelling mistakes to achieve better accuracy and efficiency in 
subsequent steps. The text is then converted (“represented”) 
into numerical vectors and matrices, on which algorithms are 
applied to train a model. Finally, the model is evaluated to con-
firm its generalisability and efficiency in the real world 21.
In recent years, there has been exponential development in 
NLP 22, particularly in machine translation 23, pattern match-
ing 24, sentiment analysis 25, and voice recognition 26. The ad-
vancement of technology has facilitated the development of 
intelligent devices such as Siri and Cortana, simultaneous 
translations like Google Translator or Microsoft Translator, and 
voice recognition software such as Windows Voice Recogni-
tion. Additionally, algorithms have been created to predict the 
financial market based on sentiment analysis of Twitter.

Machine learning
ML algorithms gather information about their surroundings 
by hypothesising a law that they will then use later. The ma-
chine “learns” through observation. The process is simple, 
with input and output variables, and the machine’s task is to 

find a connection between the two, without creating a uni-
versal law 27.
There are three modes of learning  28: supervised learning 
(SL), reinforcement learning (RL), and unsupervised learning 
(UL). In SL, the machine is provided with all the data, which 
is divided into input and output, and creates a function that 
explains the phenomenon. Later, it can use this function to 
predict outputs from new input data 29,30. In RL, the machine 
is given data sequentially, and from time to time, it evaluates 
what action is best to take to approach a known function. RL 
involves a “reward” for each action based on its functional-
ity in achieving the goal 31. In UL, the machine has access to 
all input and output data, but without subdivisions, it seeks 
to identify an underlying function for future observations. In 
this case, since the data is not split, the machine will have no 
constraints and the number of possibilities will be greater. As 
a result, groupings between data are usually created based 
on a similarity or proximity criterion, known as clustering 32.
In addition to these three types, there are also systems 
known as semi-supervised learning 33, which is a combina-
tion of SL and UL, and DL.

Deep learning
DL is a type of ML that utilises neural networks for learn-
ing through training. “Deep neural networks” are so named 
because they are composed of interconnected layers of “ar-
tificial neurons” (also known as Artificial Neural Networks or 
ANNs). This structure typically includes three or more layers, 
and in some of the latest algorithms, there can be hundreds 
of layers. In DL algorithms, as in our nervous system, learn-
ing occurs by changing the “weight” of connections between 
neurons. Functional connections are given higher priority 34. 
Artificial Neural Networks process input data in a non-linear 
manner, similar to brain neurons, and only activate if they 
reach a threshold potential determined by the weighted sum 
of inputs, resulting in an output 35. This method is ideal for 
integrating and extracting information from multimodal data, 
which is collected through several complementary modali-
ties such as behavioural measurements, electroencephalog-
raphy (EEG), and magnetic resonance imaging (MRI). The 
layers in this method establish a hierarchy, with the first lay-
ers extracting basic features specific to each modality, and 
the subsequent layers serving for abstract concepts that can 
be shared between the modalities. 
The difference with ML is the type of data processed: DL 
works on raw, unlabelled data, as opposed to ML, that works 
on extrapolated and selected data, chosen by the program-
mer. In DL, it is the algorithm itself that processes and ex-
trapolates the data it will later need to respond to the queries 
made. The data that can be used can be structured data with 
a high sample size (e.g. EEG, MRI).

AIMS 
This study aims to investigate the performance of the most 
commonly used AI algorithms in the field of mental health. 
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Additionally, we will analyse the most frequently used meth-
ods for collecting data to train these algorithms. Finally, we 
will examine the most commonly used recruitment settings. 
The ultimate objective is to establish a basis for compre-
hending the potential development and application of AI in 
the future.

RESULTS
In recent years, there have been several reviews and me-
ta-analyses exploring the use of AI in the field of mental 
health  36,37. This review includes AI studies without a focus 
on a specific algorithm or on a single mental disorder. On 
the contrary, previous studies have focused on specific al-
gorithms (e.g. ML 38, DL 39) or specific instrumental methods 
(e.g. MRI  40, EEG  41), or specific psychiatric disorders (e.g. 
anxiety and depression 42, schizophrenia) 43.
The studies’ individual outcomes differ and cover four main 
research areas: neurobiological correlates; investigation on 
clinical characterization; diagnostic ability improvement; 
and prognosis prediction. 
The study of neurobiological correlates involves the identi-
fication of brain areas and circuits that may be pathogno-
monic 44-46, as well as the investigation of patients’ brain age 
and the aging trajectory of the nervous system 47,48. 
The investigation of clinical characterisation involves the 
correlation of specific data with various aspects of the pa-
tient’s clinical and biological profile, including psychopa-

thology 49, physical comorbidities 50, self-harm, suicidal 51 and 
aggressive behaviours  52, objective and subjective psycho-
social functioning, quality of life, and the use of services 53-55. 
In the field of diagnostics, there are ongoing efforts to de-
velop innovative AI algorithms that can assist clinicians in 
distinguishing between healthy individuals and those with 
a disorder  56,57, as well as in making differential diagnoses 
among various psychiatric disorders 58-61. 
Finally, prognostic prediction 62 involves the study of the evo-
lution of a patient’s condition in relation to the treatment they 
receive, including pharmacological and psychotherapeu-
tic treatments, as well as their adherence to the treatment 
plan 63-66. An increasingly analysed topic is the discovery of 
the trajectory of individuals at risk to develop mental disor-
ders, within a primary prevention perspective 67-69.
To function optimally, AI requires a large amount of data, 
so studies typically make use of neurobiological measure-
ments, audio/video recordings, biological samples, and spe-
cial measurements. 
Neuroimaging (structural and functional MRI 70,71, magneto-
encephalography 72, positron emission tomography [PET] 73, 
etc.) and neurophysiology (EEG) 74 methods provide most of 
the neurobiological measurements.
Interviews or tests involve audio or video recordings to ex-
tract information not only from language (such as syntax and 
tone) 75, but also from non-verbal cues (such as facial expres-
sions and movements) 76.

TABLE I. Artificial Intelligence applications in mental health.

Type of algorithm Psychiatric disorder Outcome Instrumental techniques
Natural language 

processing
Schizophrenia spectrum 

disorders Neurobiological correlates Neurobiological measurements

Machine learning Bipolar Disorder Identification of brain areas and 
circuits Neuroimaging (eg., MRI)

Deep learning Major depression disorder Brain age Neurophysiology (eg., EEG)
Obsessive compulsive 

disorder Clinical characterisation Audio/video recordings

    Anxiety disorders Psychopathological aspects Biological samples
Personality disorders Physical comorbidities Genetic analysis

Self-harming dimension Other analysis
Hetero-aggressive behaviour 

dimension Other

Use of Services Somatic and physiological measure-
ments

Perception of quality of life Motion sensors
Diagnostics APP on mobile devices
Prognosis Other techniques

Prognosis in patients
Response and adherence to therapy

Prediction transition
EEG: electroencephalography; MRI: magnetic resonance imaging.
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Biological samples, including blood and saliva, were collect-
ed for genetic analyses and evaluation of various aspects, 
such as the inflammatory system, kidney and liver function, 
and lipid balance in some studies 77,78.
Other studies have also included measurements of somatic 
parameters, such as height, weight, and body mass index 
(BMI) 79, as well as movement parameters like eye, head, and 
limb movements 80. Data was collected using mobile device 
applications 81, which enabled the detection of reaction times 
and subject movements using gyroscopes and GPS tracking. 
Finally, some authors have chosen to use only socio-demo-
graphic variables and psychopathological evaluations as 
data to be included in the algorithms, without employing in-
strumental methods 82,83.
The data used in the algorithms was mainly obtained from 
subject recruitment conducted in clinical and/or university 
settings. However, the researchers also used open-access 
databases as a data source 84,85. This allowed them to collect 
the necessary amount of data to train the algorithms and 
then recruit a small sample of real-life subjects to test the 
validity of the algorithms.
A summary of the current AI applications in mental health is 
shown in Table I. 

DISCUSSION
In recent years, there has been a growing interest in AI to 
the extent that some Journals have introduced a dedicated 
section on the topic, such as The New England Journal of 
Medicine 86. As with any innovation, doubts and perplexities 
have arisen regarding the integration of AI in the medical 
and mental health fields 87,88.
The safety and reliability of each algorithm is the first as-
pect to be assessed. This parameter is evaluated using the 
technology readiness level (TRL) scale, a 9-level assessment 
invented by the National Aeronautics and Space Administra-
tion (NASA) in the 1970s 89. To date, no AI method has passed 
all the levels, making them suitable only for experimental 
and academic fields, not for use in clinical practice 90. 
The reliability of an AI algorithm is largely dependent on 
the quality of the data used to develop it 91. If databases not 
specifically created for this purpose are used, there may be 
errors, shortcomings or simplifications that reduce the ac-
curacy of the AI. In order to compensate for the considerable 
amount of data required, existing datasets are often used. 
It is also important to ensure that the data collected from 
recruited subjects is comparable to the pool on which the AI 
will be used clinically, a process commonly known as “data-
base shift”. The data must be numerous, heterogeneous but 
also specific. Therefore, data collection is typically carried 
out using instrumental methods that provide a significant 
amount of information even with small recruitment samples. 
Conversely, if instrumental methods are not available, large 
samples of subjects are necessary.
This review shows that current research is primarily focused 
on discovering new methods for diagnosing disorders and 

linking neurobiological changes with psychopathological di-
mensions. Currently, in the absence of pathognomonic bio-
logical markers, psychiatric disorders are diagnosed using 
arbitrary criteria, which can be inherently subjective, so it is 
important to exclude subjective assessments unless clearly 
defined. New classification systems are emerging to be more 
objective by making diagnoses based on biological correlates. 
An example of this is the Research Domain Criteria (RDoC) 
system created in 2009 by the National Institute of Mental 
Health (NIMH) 92. A more objective diagnosis is required, not 
only due to new classification systems, but also the need for 
new technological aids to support it. These aids are often un-
familiar to clinicians, which can lead to a sense of distrust 88.
DL is an algorithm that is playing an increasingly important 
role and has gained considerable interest in recent years 
because it allows large amounts of data from instrumental 
methods to be analysed without the need for pre-process-
ing  35, enabling increasingly complex and articulated func-
tions to be performed. The availability of powerful chips at 
affordable prices can also drive this shift towards more so-
phisticated and effective algorithms.
However, the use of AI in the clinical field still presents is-
sues beyond the development of efficient and reliable algo-
rithms. These include the attribution of responsibility and the 
possibility of hacking. Currently, there is a lack of adequate 
legislation, and in the event of an AI error, it is uncertain who 
should be held responsible: the psychiatrist who validated 
the result, the patient who accepted it, the developers of the 
algorithm, the health system that implemented it, or no one 
at all. In addition, by collecting sensitive data and tracking 
daily activities, the studies face the risk of hacking, which 
threatens the privacy of the subjects.
AI could be a valuable tool for clinicians to implement new 
classification systems based on objective biological data. 
However, this is not yet possible due to the need for increas-
ingly efficient, safe, and cost-effective algorithms, dedicated 
databases, impenetrable security systems, and training for 
clinicians in the use and interpretation of results. Addition-
ally, an information campaign directed at the general popu-
lation and the development of ethical and legislative issues 
are necessary.
To our knowledge, this is the first literature review that at-
tempts to analyse multiple types of AI in mental health, 
regardless of method and data source. In addition, subcat-
egories were created to achieve better categorisation when 
analysing all variables. Although several encouraging find-
ings were observed, this review has some limitations. At 
a methodological level, this is a qualitative analysis of the 
current literature, and it would be desirable to carry out a 
systematic review in order to obtain objective data. In addi-
tion, this review only includes the most well-known methods, 
such as ML, DL and NLP, while more unusual and less well-
known algorithms have been excluded due to the lack of suf-
ficient literature for an objective and scientifically accepted 
categorisation. 
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CONCLUSIONS
In conclusion, currently there are no algorithms that can be 
implemented in clinical practice for all the aforementioned 
problems. However, the number of studies on this topic is 
increasing, indicating a growing interest in the field of ap-
plying AI in mental health. This study is just the beginning. 
The first step is to conduct one or more systematic reviews 
on the subject to determine the most useful algorithm and 
method for clinical practice, and to identify variables to cre-
ate open-access databases that can be used to train future 
algorithms.
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